Open Source Project
Philipp Borchert, Meiru Zhang, Matias Raimundez, Jasivan Alex Sivakumar, Yupei Li, Gerasimos Lampouras
A fast, scalable, and easy-to-use Python interface to Lean 4. LeanFlow lets you run Lean code, interact with proofs, and evaluate formal statements directly from Python.
Preprint
Jasivan Alex Sivakumar, Philipp Borchert, Ronald Cardenas, Gerasimos Lampouras
We identify conjecturing as a critical bottleneck in formal mathematical reasoning. We introduce ConjectureBench and LEAN-FIRE, an inference-time method that improves autoformalisation.
Preprint
Yupei Li*, Philipp Borchert*, Gerasimos Lampouras
TopoAlign addresses data scarcity for Math LLMs by aligning code to mathematical structures, improving performance on MiniF2F and ProofNet benchmarks.
ICLR 2026 路 Rio de Janeiro
Meiru Zhang, Philipp Borchert, Milan Gritta, Gerasimos Lampouras
DRIFT decomposes informal statements, retrieves dependent premises, and selects illustrative examples before formalization, achieving state-of-the-art on ProofNet.
ACL 2025 路 Vienna
Philipp Borchert, Ivan Vuli膰, Marie-Francine Moens, Jochen De Weerdt
FLARE fuses source and target language representations within low-rank adapters, enhancing cross-lingual transfer while maintaining parameter efficiency.
EMNLP (Findings) 2024 路 Miami
Fabian David Schmidt, Philipp Borchert, Ivan Vuli膰, Goran Glava拧
MT-LLM integrates machine translation encoders into LLM backbones using self-distillation, unlocking NLU capabilities for over 127 languages.
NAACL 2024 路 Mexico City
Philipp Borchert, Jochen De Weerdt, Marie-Francine Moens
MultiRep improves few-shot relation classification by combining multiple sentence representations using contrastive learning.
EMNLP 2023 路 Singapore
Philipp Borchert, Jochen De Weerdt, Kristof Coussement, Arno De Caigny, Marie-Francine Moens
CORE is a dataset for few-shot relation classification focused on company relations, challenging models with high contextual complexity.
EMNLP 2023 路 Singapore
Manon Reusens, Philipp Borchert, Margot Mieskes, Jochen De Weerdt, Bart Baesens
This study investigates whether debiasing techniques can be effectively transferred across different languages within multilingual LLMs.
EMNLP 2023 路 Singapore
Jonathan Tonglet, Manon Reusens, Philipp Borchert, Bart Baesens
SEER introduces a novel method for selecting diverse and representative examples for in-context learning in complex QA tasks.